

 Asciidoctor Docs

 In this project

 AsciiDoc

 Language
 Syntax Quick Reference

 Processing

 Asciidoctor Ruby
 Asciidoctor.js JavaScript
 AsciidoctorJ Java

 Extensions

 Add-on Converters

 reveal.js Ruby, JavaScript
 PDF Ruby
 EPUB3 Ruby

 Extended Syntax

 Asciidoctor Diagram Ruby

 Tooling

 Build Automation

 Maven Tools Java
 Asciidoclet Java

 Text Editors / Viewers

 Browser Extension
 IntelliJ Plugin

 Chat

 List

 Source

 Tweets

 Asciidoctor PDF

	
	
 What’s New

	
 Features

	
 Install Asciidoctor PDF

	
 Upgrade to Asciidoctor PDF 2

	
 Convert AsciiDoc to PDF

	

 Images
	
 Image Paths and Formats

	
 Image Scaling

	
 Inline Images

	
 Background Images

	
 Import PDF Pages

	
 Font and Image Icons

	
 Interdocument Xrefs

	
 Roles

	
 Breakable and Unbreakable Blocks

	
 Syntax Highlighting

	
 Autofit Text

	
 STEM

	
 Passthrough Content

	
 Autowidth Tables

	
 Hide Section Titles

	
 Title Page

	
 TOC

	
 PDF Outline

	
 Index Catalog

	
 Page Numbers

	
 AsciiDoc Attributes for PDF

	
 Optimize the PDF

	
	

 Theming
	
 Create a Theme

	
 Apply a Theme

	

 Theme Keys Reference
	
 Extends

	
 Font

	
 Page

	
 Base

	
 Role

	
 Abstract

	
 Admonition

	
 Block

	
 Block Image

	
 Button

	
 Callout List and Number

	
 Caption

	
 Code Block

	
 Codespan

	
 Cover

	
 Description List

	
 Example

	
 Footnotes

	
 Heading

	
 Index

	
 Keyboard

	
 Link

	
 List

	
 Mark

	
 Menu

	
 Prose (Paragraph Text)

	
 Quote

	
 Quotes

	
 Running Content

	
 Section

	
 Sidebar

	
 SVG

	
 Table

	
 Thematic Break

	
 Title Page

	
 TOC

	
 Verse

	

 Keys, Properties and Values
	
 Measurement Units

	
 Colors

	
 Variables

	
 Math Operations

	
 Quoted String

	
 Block Styles

	
 Block Image Styles

	
 Table Styles

	
 Text Styles

	

 Fonts
	
 Use Custom Fonts

	
 Prepare a Custom Font

	
 Fallback Fonts

	
 Create a CJK Theme

	
 Custom Roles

	
 Theme Images

	
 Covers

	
 Title Page

	
 Add Running Content

	
 Configure the Page Numbers

	
 Print and Prepress Modes

	
 Source Highlighting Themes

	
	

 Extend the PDF Converter
	
 Create a Converter

	
 Use the Converter

	
 Use Cases

 Asciidoctor PDF
 2.3

 	
 AsciiDoc

	
 Asciidoctor
 	
 2.0

	
 Asciidoctor.js
 	
 3.0

	
 2.2

	
 AsciidoctorJ
 	
 3.0.0-alpha.1

	
 2.5

	
 Browser Extension

	
 Maven Tools
 	
 3.0

	
 2.2

	
 Asciidoclet
 	
 1.5.6

	
 Asciidoctor reveal.js
 	
 5.0

	
 4.1

	
 Asciidoctor PDF
 	
 2.3

	
 2.2

	
 2.1

	
 2.0

	
 Asciidoctor EPUB3
 	
 2.0

	
 Asciidoctor Diagram
 	
 2.2

	
 Community

 	Asciidoctor PDF
	Images
	Image Paths and Formats

 2.3

 2.3
 2.2
 2.1
 2.0

Edit this Page

Image Paths and Formats

Images are resolved at the time the converter runs.
That means they need to be located where the converter can find them and be in a format it can read.

imagesdir attribute

Relative image paths in a document are resolved relative to the value of the imagesdir attribute.
This is effectively the same as how the built-in HTML converter works when the data-uri attribute is set.
The imagesdir is blank by default, which means relative images paths are resolved relative to the input document.
Relative images paths in the theme are resolved relative to the value of the pdf-themesdir attribute (which defaults to the directory of the theme file).
The imagesdir attribute is not used when resolving an image path in the theme file.
Absolute image paths are used as is.

If the image is an SVG, and the SVG includes a nested raster image (PNG or JPG) with a relative path, that path is resolved relative to the directory that contains the SVG.

The converter will refuse to embed an image if the target is a URI (including image references in an SVG) unless the allow-uri-read attribute is enabled via the CLI or API.

If you use a linked image in an SVG, the width and height of that image must be specified.
Otherwise, the SVG library will fail to process it.

Asciidoctor Diagram integration

Asciidoctor PDF provides seamless integration with Asciidoctor Diagram.

This integration works because Asciidoctor PDF sets the data-uri document attribute internally.
When Asciidoctor Diagram detects that this attribute is set, it passes through the absolute path of the generated image, allowing Asciidoctor PDF to locate it.
Although the generated image is written to a file as an interim step, Asciidoctor PDF still embeds that image into the generated document.
Thus, this behavior is consistent with the definition of the data-uri attribute.

When using Asciidoctor Diagram with Asciidoctor PDF, the input directory (docdir) and the output directory (outdir and, in turn, imagesoutdir) can differ and Asciidoctor PDF will still be able to find and embed the generated images.

Asciidoctor Diagram builds the imagesoutdir from the intrinsic outdir attribute.
This works if Asciidoctor PDF is writing the output to a file.
If the output is not being written to a file, you can set the outdir or imagesoutdir attributes explicitly.

You can change the display size of the image in the PDF using the pdfwidth attribute on the diagram block or macro.

Image formats

The following image types (and corresponding file extensions) are supported:

	
PNG (.png)

	
JPEG (.jpg)

	
SVG (.svg)

	

	
The GIF (.gif), TIFF (.tiff), WebP (.webp), BMP (.bmp), and interlaced PNG formats are not supported unless you install prawn-gmagick.
See Support for additional image file formats for details.

	

	
The SVG must declare the viewBox attribute on the root <svg> element.
Without that information, the converter does not know how to properly interpret the SVG data and portions of the image may get cut off.
Make sure that the SVG does not define width and height attributes on the root <svg> element.
(A width of 100% is particularly problematic as it can add empty space above and below the visible image).
The width should be controlled using the pdfwidth attribute on the image macro instead.

In order to embed an image into a PDF, Asciidoctor PDF must understand how to decode it.
To perform this work, Asciidoctor delegates to the underlying libraries.
Prawn provides support for decoding JPG and PNG images.
prawn-svg brings support for translating SVG images to PDF commands.
Without any additional libraries, those are the only image file formats supported by Asciidoctor PDF.

Support for additional image file formats

If you need support for additional image formats, such as GIF, TIFF, WebP, or interlaced PNG—and you don’t want to convert those images to a supported format like JPG—you must install the prawn-gmagick Ruby gem.
prawn-gmagick is an extension for Prawn (Linux and macOS only) that delegates image decoding to GraphicsMagick to add support for all image formats recognized by that library.

prawn-gmagick has the additional benefit of significantly reducing the processing time, power, and memory necessary to generate a PDF that contains a lot of PNG images.
For large books (such as Pro Git), you might see the conversion time drop by as much as half.
Uncompressing PNG image data (specifically zlib inflating) requires a lot of mathematical computation, a task Ruby is not particularly efficient at performing.
That’s why adding the prawn-gmagick gem to the converter makes such a substantial difference.

As an alternative to using prawn-gmagick, you could optimize the images you pass into Asciidoctor PDF, either by scaling them down or converting them to an uncompressed format like JPG.

The prawn-gmagick gem uses native extensions to compile against GraphicsMagick.
This system prerequisite limits installation to C Ruby running on Linux and macOS.
Please refer to the README for prawn-gmagick to learn how to install it.

$ gem install prawn-gmagick

When this gem is installed, Asciidoctor automatically detects and loads it, then delegates all image decoding to GraphicsMagick by way of the bridge it provides.
We highly recommend using this gem with Asciidoctor PDF if you’re able to install it.

Unregister prawn-gmagick

In rare cases, GraphicsMagick (the backend library for prawn-gmagick) can misread the bit depth of certain PNG images.
If this happens, you can instruct Asciidoctor PDF to not delegate to GraphicsMagick.

You can configure Asciidoctor PDF to not delegate to GraphicsMagick when loading PNG images by requiring asciidoctor/pdf/nopngmagick when calling Asciidoctor PDF, as follows:

$ asciidoctor-pdf -r asciidoctor/pdf/nopngmagick doc.adoc

Alternately, you can tell Asciidoctor PDF not to delegate to GraphicsMagick at all by requiring asciidoctor/pdf/nogmagick when calling Asciidoctor PDF, as follows:

$ asciidoctor-pdf -r asciidoctor/pdf/nogmagick doc.adoc

Bypassing prawn-gmagick means you no longer get support for additional image formats that Prawn cannot handle and/or the PNG acceleration it provides.

Fonts in SVG images

Asciidoctor PDF uses prawn-svg to embed SVGs in the PDF document, including SVGs generated by Asciidoctor Diagram.

Actually, it’s not accurate to say that prawn-svg embeds the SVG.
Rather, prawn-svg is an SVG renderer.
prawn-svg translates an SVG into native PDF text and graphic objects.
You can think of the SVG as a sequence of drawing commands.
The result becomes indistinguishable from other PDF objects.

What that means for text is that any font family used for text in the SVG must be registered in the Asciidoctor PDF theme file (and thus with Prawn).
Otherwise, Prawn will fall back to using the closest matching built-in (afm) font from PDF (e.g., sans-serif becomes Helvetica).
Recall that afm fonts only support basic Latin.
As we like to say, PDF is bring your own font.

If you’re using Asciidoctor Diagram to generate SVGs to embed in the PDF, you likely need to specify the default font the diagramming tool uses.
Let’s assume you are making a plantuml diagram.

To set the font used in the diagram, first create a file named plantuml.cfg and populate it with the following content:

skinparam defaultFontName Noto Serif

	

	
You can choose any font name that is registered in your Asciidoctor PDF theme file.
When using the default theme, your options are "Noto Serif", "M+ 1mn", and "M+ 1p Fallback".

Next, pass that path to the plantumlconfig attribute in your AsciiDoc document (or set the attribute via the CLI or API):

:plantumlconfig: plantuml.cfg

Clear the cache of your diagrams and run Asciidoctor PDF with Asciidoctor Diagram enabled.
The diagrams will be generated using Noto Serif as the default font, and Asciidoctor PDF will know what to do.

An alternative approach is to remap the font family that the diagram tool selects.
For example, in your theme file, you might override the definition of the sans-serif font.

extends: default
font:
 catalog:
 merge: true
 sans-serif: GEM_FONTS_DIR/mplus1p-regular-fallback.ttf

The bottom line is this:
If you’re using fonts in your SVG, and you want those fonts to be preserved, those fonts must be defined in the Asciidoctor PDF theme file.

Remote images

In order to generate a PDF, the converter must read all image files in order to embed the image data in the PDF.
This is a requirement of the PDF format.
The task that the PDF converter must perform is roughly equivalent to the data-uri mode of the HTML converter.

By default, Asciidoctor will not read images from a URI.
Therefore, if the target of one or more images in the document is a URI, you must also set the allow-uri-read attribute when calling Asciidoctor PDF from the CLI or API.
For example:

$ asciidoctor-pdf -a allow-uri-read document.adoc

When this attribute is not set, you may enounter the following warning:

asciidoctor: WARNING: cannot embed remote image: https://example.org/image.png (allow-uri-read attribute not enabled)

Since allow-uri-read is a secure attribute, setting it in the document has no impact.

 Convert AsciiDoc to PDF
 Image Scaling

 Asciidoctor

 	Home
	Docs
	Chat
	List
	Source

 @asciidoctor

 Copyright © 2024 Dan Allen, Sarah White, and individual Asciidoctor contributors. Except where noted, the content is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.

 The UI for this site is derived from the Antora default UI and is licensed under the MPL-2.0 license. Several icons are imported from Octicons and are licensed under the MIT license.

 AsciiDoc® and AsciiDoc Language™ are trademarks of the Eclipse Foundation, Inc.

 Thanks to our backers and contributors for helping to make this project possible. Additional thanks to:

 Authored in AsciiDoc.
Produced by Antora and Asciidoctor.

